Chapter 11
Sectoral Co-movements in the Indian Stock
Market: A Mesoscopic Network Analysis

Kiran Sharma, Shreyansh Shah, Anindya S. Chakrabarti,
and Anirban Chakraborti

Abstract In this article, we review several techniques to extract information
from large-scale stock market data. We discuss recurrence analysis of time series,
decomposition of aggregate correlation matrices to study co-movements in financial
data, stock level partial correlations with market indices, multidimensional scaling,
and minimum spanning tree. We apply these techniques to daily return time series
from the Indian stock market. The analysis allows us to construct networks based on
correlation matrices of individual stocks on one hand, and on the other, we discuss
dynamics of market indices. Thus, both microlevel and macrolevel dynamics can
be analyzed using such tools. We use the multidimensional scaling methods to
visualize the sectoral structure of the stock market and analyze the co-movements
among the sectoral stocks. Finally, we construct a mesoscopic network based on
sectoral indices. Minimum spanning tree technique is seen to be extremely useful
in order to group technologically related sectors, and the mapping corresponds to
actual production relationship to a reasonable extent.

11.1 Introduction

In this paper, we present a coherent analysis of the Indian stock market employing
several techniques recently proposed in the econophysics literature. Stock market
is a fascinating example of a rapidly evolving multi-agent interacting system that
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generates an enormous amount of very well-defined and well-documented data. Due
to the sheer volume of data, it becomes possible to construct large-scale correlation
matrices across stocks that contain information about the aggregate market. Thus,
the loss of information due to aggregation can be minimized to a great extent.
Several useful techniques to analyze such large-scale data have been proposed,
and there are multiple resources reviewing them. Interested readers can refer to
Mantegna and Stanley (1999) and Bouchaud and Potters (2009) for excellent and
quite extensive textbook expositions.

We present a series of analysis on the Bombay stock exchange, using both
macroscale and microscale data. Even though there are separate attempts in a few
other papers that presented analysis on similar datasets, this probably is the first
attempt to systematically analyze Indian stock market data in a comprehensive
manner. At the beginning of the discussion on every technique, we point out the
papers that proposed the techniques and subsequent analyses, if any, on Indian or
any other emerging market data.

India, being an emerging market, is an interesting example. Several papers Pan
and Sinha (2007) and Bastos and Caiddo (2011) have pointed out that there are
systematic differences between the dynamic behaviors of developed economies and
emerging economies. Earlier hypothesis was that, as the financial market develops
in a country, the market dynamics changes monotonically or at least in a clearly
discernible way. Although it sounds intuitive, there is no clear demonstration of
changing dynamical structure of the markets along with the process of development
(Kuyyamudi et al. 2015). Instead, what we find is that, in a cross-sectional sense,
such differences in the market behavior exist across countries.

In the following, we focus only on the Indian stock market. To summarize the
findings, we see that the recurrence analysis is not very useful for the present dataset.
Correlation decomposition techniques do not show any strong group correlation
structure, which is consistent with the literature (Pan and Sinha 2007). Different
clustering algorithms have been applied to understand sectoral concentration.
Finally, we end with a section on sectoral correlation networks. A nontrivial finding
is that technologically related sectors show very similar kind of fluctuations in the
stock market. We quantify the relationship using network theoretic tools.

11.2 Nonlinear Dynamics: Recurrence Plot Analysis

For a very long time, it had been conjectured that the stock market indices may have
certain features of highly nonlinear dynamical system. It originated from certain
speculations that economic systems, in general, may show chaotic behavior (see,
e.g., Baumol and Benhabib 1989). Brock and Sayers (1988) considered an idea
that the aggregate macro dynamics of an economy may show chaotic behavior.
By and large, such theories are no longer considered to be useful descriptions of
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economic dynamics. However, in recent times there have been some attempts to
analyze the stock index behavior, by using recurrence analysis based on phase space
reconstruction.

In general, the technique’s usefulness comes from the fact that it is nonparamet-
ric, does not make any assumptions about the data, and can work with nonstationary
data. In particular, the technique is useful for detecting sudden large change in a time
series. A stock market crash has often been thought as a phase transition indicating
a large abrupt change in the behavior (Sornette 2004). However, the technique is
useful for recovering patterns in potentially highly nonlinear but recursive systems,
an assumption that is not satisfied by the stock market. We follow the mode of
analysis presented in details in Guhathakurta et al. (2010) and Bastos and Caiddo
(2011).

Here, we describe the construction of recurrence plots. It is based on the idea
of recurrence within a phase space, and the plot exhibits times, when a nonlinear
system revisits the same phase space during the process of evolution. Consider
a time series {x(i)}}_, representing an index of a stock market. We know, from
Takens’ theorem (Takens 1981), that it is possible to extract information about the
phase space from the time series (see also Bastos and Caiddo 2011). We start by
embedding {x} into an m dimensional space given by

(@) = [x(@), x( + 8),x(i + 268),...,x(i + (m — 1)§)] (11.1)

where § is the time delay. Together these two parameters constitute the set of
embedding parameters. Thus y(i) is a point in the m dimensional Euclidean space,
representing the evolution of the system in the reconstructed phase space. We collect
all such y(i)’s and present element-by-element difference with Euclidean norm to
create a two-dimensional plot. Such a plot exhibits if there is any recurrence as
explained below.

Let us define a matrix R such that its i, j-th elements (i,j = 1,....,n, withn =
N — (m — 1)6) are expressed as

{0 ) ()] > €
B =i b)) = e

where ||.|| is the Euclidean norm and € is the threshold applied which is a positive
real number. Recurrence plots are exactly symmetric along the diagonal.

Inference based on structures: In recurrence plots, we see multiple patterns
including dots, as well as diagonal, vertical and horizontal lines, and all possible
combinations of them.

» Isolated points exist if states are rare, or persistence is low, or if they represent
high fluctuations.

 Existence of a diagonal line Ry, j+m = 1 (form = 1,...,[ where [ is the length
of the diagonal line) indicates presence of recurrence, i.e., a segment of the time
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series revisits the same area in the phase space at a lag. If there are lines parallel
to the line of identity, it represents the parallel evolution of trajectories.

» Existence of a vertical/horizontal line R;jy,, = 1 (form = 1,...,v where v
is the length of the line) indicates a stage during evolution where the system
gets trapped for some time and does not evolve fast. This can be an intermittent
behavior.

Now we conduct recurrence quantification analysis (RQA) by studying the
structure of the plots numerically. Such an analysis is based essentially on densities
of isolated points, diagonal lines, as well as vertical lines. We borrow the discussion
presented below from Bastos and Caiddo (2011). The measures, which we have
considered, are as follows:

¢ RR: Recurrence rate.

e DET: Fraction of points in the plot forming diagonal lines. This indicates
determinism and hence predictability.

e (L): Average lengths of the diagonal lines.

e LMAX: Length of the longest diagonal line (except the line of identity). Its
inverse is associated with the divergence of the trajectory in phase space.

* ENTR: Shannon entropy defined over the distribution of lengths of diagonal lines
indicates diversity of the diagonal lines.

* LAM: Fraction of points forming vertical lines indicates existence of laminar
states in the system.

e TT: Average length of the vertical lines. This value estimates the trapping time.

We have computed the RQA measures for the BSE index, under a range of
embedding dimension. In each case, we have set the delay equal to 1.

InFigs. 11.1 and 11.2, we present recurrence analysis on logarithmic return series
(r, = InP; —In P,_;) constructed from BSE index data. As it is apparent, there is
no clearly discernible pattern in the data. Next, we follow the standard approach and
use the level of the price data upon normalization by the maximum value of the time
series (13I = (P; — Puin)/Pmax)- Table 11.1 contains the RQA measures. Most of the
prior literatures on stock market data consider high values of embedding parameter.
It is evident that, in general, recurrence rates are very low and determinism is very
high. However, this approach has an inherent problem that it is not particularly
good at differentiating non-recursive series from recursive series. In general, we
found that when we construct similar measures for standard recursive series, it
is not clear from such RQA measures that they can be easily separated from a
stochastic series. Thus, it does not really shed much light on the problem, as the
primary focus is to figure out determinism or lack thereof. Bastos and Caiddo (2011)
discusses a possible application that these measures still retain some usefulness for
cross-country analysis. Since in this case we are focusing on one country only, it
is not very helpful. So, we consider a fully stochastic framework in the rest of the
analysis.
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Fig. 11.1 Left panel: Normalized daily return series constructed from BSE index data for five
years (June 6, 2011, to June 6, 2016). Right panel: Recurrence plot constructed from the same data
with an embedding dimension equals to 11 and time delay 1
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Fig. 11.2 Distance plots constructed from the BSE index for different values of the embedding
dimensions (m = 1, 5, 11, 21)
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Table 11.1 Measures based

- Quantity |m=1 |\m= m= m=11

on recurrence analysis of I
normalized BSE data. RR 0.0758 | 0.0442 |0.0075 |3.1049 x 10
Generated by the CRP DET 0.9029 |0.8817 |0.8516 |0.9211
toolbox (Marwan et al. 2002, (L) 4.3854 3.9302 | 3.8841 |4.6667
2007). Threshold for LMAX 146 88 58 18
calculating neighbors set at ENTR | 2.0319 | 1.8575 | 1.8095 | 1.8527
the default value 0.1

LAM 0.9479 1 0.9074 |0.7234 |0.2763

TT 5.7416 | 4.4451 |3.2874 |2.2703

11.3 Empirical Study of the Correlation Structure
of the Indian Stock Market

In this section, we analyze the empirical cross-correlation matrices constructed from
the stock market data.

11.3.1 Data Specification, Notations, and Definitions

In order to study correlations and co-movements in the stock price time series,
the popular Pearson correlation coefficient was commonly used. However, with
the electronic markets producing data at different frequencies (low to high), it is
now known that several factors, viz., the statistical uncertainty associated with
the finite-size time series, heterogeneity of stocks, heterogeneity of the average
inter-transaction times, and asynchronicity of the transactions, may affect the
applicability/reliability of this estimator. In this article, we have mainly focused on
the daily returns computed from closure prices, for which the Pearson coefficient
works well.

11.3.1.1 Dataset

We have used the freely downloadable daily adjusted closure prices from Yahoo
finance for N = 199 companies in the Bombay stock exchange (BSE) SENSEX
(https://in.finance.yahoo.com/q/hp?s=%SEBSESN), for 5 years, over a period span-
ning from June 6, 2011, to June 6, 2016. Also, we have downloaded 199 stock prices
of companies chosen randomly from the BSE and 13 sectoral indices of the BSE,
for the period May 27, 2011, to May 27, 2016. The lists are given in the Tables 11.2
and 11.3, in Appendices A and B, respectively.
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11.3.2 Correlation Matrices

We construct the correlation matrix from individual stock returns in the following
way.

11.3.2.1 Pearson Correlation Coefficient

In order to study the equal time cross correlations between N stocks, we first denote
the adjusted closure price of stock i in day t by P;(t) and determine the logarithmic
return of stock i as r;(t) = In P;(t) —In P;(t — 1). For the window of T consecutive
trading days, these returns form the return vector r;. We use the equal time Pearson
correlation coefficients between stocks i and j defined as

(rirj) = (ri)(r)
JIR) = )10 = ()]

Cj = , (11.2)

where (. ..) indicates an average over the window of T successive trading days in the
return series. Naturally, such correlation coefficients satisfy the usual condition of
—1 < C; =< 1, and we can create an N x N correlation matrix C by collecting
all values (Chakraborti 2006; Tilak et al. 2012). By construction, the matrix is
symmetric, and it serves as the basis of the rest of the present article.

11.3.3 Decomposition Analysis

For the present section, we are following the sequence of methods discussed by Pan
and Sinha (2007) which is one of the first few papers that applied this technique.
Suppose we have N return time series of length 7 that are pairwise uncorrelated.
The correlation matrix generated by collecting all pairwise correlations for N of
such series is called the Wishart matrix. In the limits N — oo and T — o0, such
that the ratio Q = T/N > 1, the eigenvalue distribution of this matrix has a specific
distributional form,

\/(Amax - A)(A - A'min)
R ,

f(A) =(Q/2m) (11.3)
for Amin < A < Amax and O otherwise. This distribution is clearly bounded by
Amax.min = [1 £ (1/4/0)]?. In the BSE data, we considered Q = 5. Thus, the Wishart
matrix should have the following bounds: A, = 0.3056 and A, = 2.0944. The
distribution of eigenvalues unexplained by the Wishart matrix sheds light on the
interaction structures and the coevolution process of the stocks in the market.
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The largest eigenvalue corresponds to the market mode which captures the
aggregate dynamics of the market that is common across all stocks. The eigenvectors
associated with the next few eigenvalues (we took the next five dominant eigenval-
ues) describe the sectoral dynamics. The rest of the eigenvectors correspond to the
random mode. From such a segregation, it is possible to reconstruct the contributions
of different modes to the aggregate correlation matrix.

Following the literature to filter the data to remove market mode and the random
noise, we first decompose the aggregate correlation matrix as

N—1
C=Y haa], (11.4)
i=0

where A; are the eigenvalues of the correlation matrix C. An easy way to handle
the reconstruction of the correlation matrix is to sort the eigenvalues in descending
order. Then we rearrange the eigenvectors g; in corresponding ranks. This allows us
to decompose the matrix into three separate components, viz., market, group, and
random:

C=C"+cC%+Ck (11.5)
Ng N—1
= koaoag + Zkia,ﬂ? + Z )LiaiaiT, (116)
i=1 i=Ng+1

where N is taken to be 5, i.e., it corresponds to the five largest eigenvalues except
the first one. It is worth noting that the exact value of Ng is not crucial for the
result as long as it is kept within the same ballpark. The decomposition is shown in
Fig. 11.3.

An important finding is that the group mode almost coincides with the random
mode, whereas the market mode is segregated by a large margin from the rest. Thus,
the sectoral dynamics are almost absent, whereas the market mode is very strong.
This is in line with the prior literature (see, e.g., Pan and Sinha 2007).

Following standard procedure (see, e.g., Pan and Sinha 2007), we also calculate
the inverse participation ratio (IPR) to extract information about contribution of
different stocks to the eigenvalues. IPR is defined for the k-th eigenvector as the sum
of fourth power of all individual components of the corresponding eigenvector, I; =
Z?’:l [ai]*, where a;; are the components of eigenvector k. The result is presented
in Fig. 11.4. Intuitively, if a single stock dominates in terms of contribution to any
particular eigenvector, then the IPR would go to 1. For example, consider a limiting
case of a5y = 1 and a; = 0 for i % 1. On the other hand, if all elements were
equal to 1/+/N, then we would get IPR = 1/N. Thus by considering IPR, we can
understand if there is significant contribution coming from specific stocks or a more
diversified bundle of stocks.
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Fig. 11.3 Left panel: Probability density function of the cross-correlation coefficients of 199 BSE
stocks. Right panel: Decomposition of the correlation matrix into market mode, group mode, and
random mode
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Fig. 11.4 Eigenvalue decomposition of the correlation matrix. Left panel: Probability density
function of eigenvalues. Inset shows the full distribution. Right panel: Inverse participation ratio
with respect to the corresponding eigenvalues
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11.3.4 Partial Correlation Analysis

Partial correlation is a newly introduced tool to investigate the effects of third stock
on the correlation between pairs of stocks. Kenett et al. (2015) introduced this
analysis for multiple stock markets. In the present paper, we apply their technique to
the Bombay stock exchange data. To describe its usefulness, consider three stocks,
i, j, and k, with significant correlation between all three pairs of the stocks. Suppose
we think that the high value of Cj; is the result of their own correlations with %, i.e.,
part of C;; might be spurious correlation arising from a third variable effect (in this
case k), we should remove such effects to figure out the actual correlation across i
and j. Then, we can recalculate Cj;, after controlling for the effect of k. The resultant
correlation value is called the partial correlation. The difference between the raw
correlation value for a pair of stocks and the corresponding partial correlation tells
us how much third variable effect was there.

For this purpose, we again use the same daily log return r;(r). However, we need
to adjust for one more factor. From the preceding analysis, we already know that
there is a significant market mode. Therefore, that will act as a common driving
factor. Hence, the market mode should also be controlled in order to extract the
actual correlation values for the exact same reason. In this case, the market mode
is given by a market index. Note the difference from the earlier analysis. For
constructing the market mode from the eigenvalue analysis, the market mode arises
endogenously from the panel data itself, whereas in this case, we take the market
mode to be given by an exogenous index time series. Hence, these two types of
analysis complement each other.

Following the notation of Kenett et al. (2015), let x and y be two time series and
let M be the BSE index for the same time frame. The partial correlation, (x, y|M), is
defined as the standard Pearson correlation coefficient (described above) between x
and y after controlling for M. More technically, this is the correlation between the
residuals of x and y which are unexplained by the market index represented by M.
So first, we need the residuals of the two time series. A simple way to do it would
be to regress both on M. Then we can work with the resulting variables. Formally,
the correlation is given as

(Cx y CxM Cy.M)
Ji-cln-c,)

Ciym = L7

In the same way, when the same two stocks x and y are affected by a common
stock z, we can control for that effect as well. Given a third stock z, the partial
correlation between x and y after controlling for both the market factor and the third
stock z is given by the following formula:

_ Ciyimt — Crzm-Cyzm
CX,,V|M,z = > >
\/ 1-c -,

(11.8)
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If it is found that the third stock has an important effect on pairs of stocks, then
it is useful to define the “influence quantity” (see Kenett et al. 2015)

d(x,¥|z) = Cyym — Cyim.z- (11.9)

Magnitude of this quantity will reflect how much influence the third stock has on
a certain pair of stocks. A natural extension of this idea is to consider the average
influence d(x|z) of stock z on the correlations between a given stock x and all other
stocks except x itself and z. Kenett et al. (2015) defined this index as the following:

d(x|z) = (d(x,¥|2)) 5. - (11.10)

This quantity captures the average influence from stock z to stock x through the
third variable effect after controlling for the market index. We present all results of
our analysis in Fig. 11.5. Panel (a) shows the correlation coefficients of all stocks
after controlling for the market index. Since the bulk of it is below the 45° line,
we conclude that the market index has a positive effect on pairwise correlations.
This is consistent with the results from the eigenvalue analysis and also with Kenett
et al. (2015). Similarly, in panel (b), we show the data for the same correlation
coefficients, after controlling for all possible third variable effects. In panel (d),

0.8 = 0.8
a
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5 ey > 02 ;8
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0 . \
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= 0.04
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stock d(x|z)

Fig. 11.5 Correlation matrix after controlling for market mode (BSE index). Panel (a): Partial
correlation after controlling for the market mode as a function of raw correlation coefficients.
Panel (b): Same after controlling for the third variable effect. Panel (c): Influence of all stocks as
the third variable (on x-axis) on all other stocks (on y-axis). Panel (d): Probability density function
of average influence quantity
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we present the probability density function of the influence quantity. Again bulk of
the distribution is in the positive quadrant implying positive effect on average.

11.4 Network Analysis

In this section, we present network analysis based on the empirical correlation
matrix.

11.4.1 Distance Metric

To obtain “distances,” the following transformation

dyj = /2(1 = Cy) (11.11)

is used, which clearly satisfies 2 > dj; > 0. Collecting all distances, one can form
an N x N distance matrix D, such that all elements of the matrix are “ultrametric”
(Rammal et al. 1986). The concept of ultrametricity appears in multiple papers.
Interested readers can refer to the detailed discussions by Mantegna (1999), Onnela
et al. (2003a,b), and Chakraborti (2006) among others. There are multiple possible
ultrametric spaces. We opt for the subdominant ultrametric, as it is simple to work
with, and its associated topological properties. The choice of the nonlinear function
is again arbitrary, as long as all the conditions of ultrametricity are met.

11.4.2 Multidimensional Scaling (MDS)

Multidimensional scaling is a method to analyze large-scale data that displays the
structure of similarity in terms of distances, given by Eq.(11.11), as a geomet-
rical picture or map, where each stock corresponds to a set of coordinates in a
multidimensional space. MDS arranges different stocks in this space according
to the strength of the pairwise distances between stocks, — two similar stocks are
represented by two sets of coordinates that are close to each other, and two stocks
behaving differently are placed far apart (see Borg and Groenen 2015) in the space.
We construct a distance matrix consisting of N x N entries from the N time series
available, defined using Eq. (11.11):
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diy dip ... diy
dy dyy ... dy

dyi dna ... dyy
Given D, the aim of MDS is to generate N vectors xy, ..., xy € 9P, such that
lxi = x|l ~ dj Vi,j €N, (11.12)

where |.|| represents vector norm. We can use the Euclidean distance metric as is
done in the classical MDS. Effectively, through MDS we try to find a mathematical
embedding of the N objects into %" by preserving distances. In general, we choose
the embedding dimension D to be 2, so that we are able to plot the vectors x; in the
form of a map, representing N stocks. It may be noted that x; are not necessarily
unique under the assumption of the Euclidean metric, as we can arbitrarily translate
and rotate them, as long as such transformations leave the distances |x; — x|
unaffected. Generally, MDS can be obtained through an optimization problem,

where (x1, ..., xy) is the solution of the problem of minimization of a cost function,
such as
min — x| — di)*. 11.13
it Y= 51 = s
i<j

In order to capture the sectoral behavior of the market visually, we have generated
the MDS plot of 199 stocks as described before, for the time window of 250
trading days between May 2015 and May 2016. As before, using the correlation
matrix as input, we computed the distance matrix using the transformations (given
by Eq.(11.11)). The distance matrix was then used as an input to the inbuilt
MDS function in MATLAB (http://in.mathworks.com/help/stats/cmdscale.html).
The outputs of the MDS were the sets of coordinates, which were plotted as the
MDS map as shown in Fig. 11.6.

The coordinates are plotted in a manner such that the centroid of the map
coincides with the origin (0, 0). It is interesting to follow the positions of certain
sectors, (i) sugar, (ii) textiles, and (iii) pharmaceuticals, which will be discussed in
details in Sect. 11.5.

11.4.3 Dendrogram

Dendrogram is basically a tree diagram. This is often used to depict the arrangement
of multiple nodes through hierarchical clustering. We have used the inbuilt function
in MATLAB (http://in.mathworks.com/help/stats/dendrogram.html) to generate the
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Fig. 11.6 Multidimensional scaling of the sample data for the time window May 2015-May 2016.
There is a cluster of stocks with identifiers 18, 54, 21, etc. at the top, all of which belong to the
sugar industry (Appendix A)

stocks

Fig. 11.7 Dendrogram of 199 stocks

hierarchical binary cluster tree (dendrogram) of N stocks connected by many
U-shaped lines (as shown in Fig. 11.7), such that the height of each U represents
the distance (given by Eq.(11.11)) between the two data points being connected.
Thus, the vertical axis of the tree captures the similarity between different clusters,
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whereas the horizontal axis represents the identity of the objects and clusters. Each
joining (fusion) of two clusters is represented on the graph by the splitting of a
vertical line into two vertical lines. The vertical position of the split, shown by
the short horizontal bar, gives the distance (similarity) between the two clusters.
We set the property “linkage type” as “Wards minimum variance,” which requires
the distance method to be Euclidean that results in group formation such as the
pooled within-group sum of squares which would be minimized. In other words,
at every iteration, two clusters in the tree are connected such that it results in the
least possible increment in the relevant quantity, i.e., pooled within-group sum of
squares. Figure 11.7 shows the dendrogram of all the 199 stocks clustered in five
different colors (by using “color threshold” property in MATLAB). The magenta
color represents the cluster of “sugar industries.”

11.4.4 Minimum Spanning Tree

A minimum spanning tree is a spanning tree of a connected, undirected graph such
that all the N vertices are connected together with the minimal total weighting for its
N —1 edges (total distance is minimum). The distance matrix defined by Eq. (11.11)
was used as an input to the inbuilt MST function in MATLAB (http://in.mathworks.
com/help/bioinfo/ref/graphminspantree.html). See MATLAB documentation for all
details. Here we state Kruskal and Prim algorithms for the sake of completeness
of the present article. Description of the two algorithms (source: see http://in.
mathworks.com/help/bioinfo/ref/graphminspantree.html):

e Kruskal — This algorithm extends the minimum spanning tree by one edge at
every discrete time interval by finding an edge, which links two separate trees in
a spreading forest of growing minimum spanning trees.

e Prim — This algorithm extends the minimum spanning tree by one edge at every
discrete time interval by adding a minimal edge, which links a node in the
growing minimum spanning tree with one other remaining node.

Figure 11.8 shows the MST for all the 199 stocks. MATLAB algorithms set the
root node as the first node in the largest connected component, which in our case is
node 43.

11.5 Sectoral Co-movements: Mesoscopic Network

After quantifying the general cross-correlation structure of the market, we probe
deeper into the sectoral co-movements. There are multiple ways to analyze the
data. First, we can impose a threshold on the group cross-correlation matrix and
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Fig. 11.8 Minimum spanning tree (MST) of the sample data. For such microlevel data, there is no
clear pattern. However, the pattern becomes much clearer with sectoral data (Sect. 11.5)

construct a network of stocks which move closely. This is the approach that is
followed in Pan and Sinha (2007), for example. This approach has some problems.
First, the threshold has to be exogenous, hence basically arbitrary. Second, even
with such networks, it is difficult to identify clusters that match with actual industry
classifications. An alternative way is to follow the industry classifications first, and
then try to see if they form clusters.

To study the sectoral behavior in the market, we have selected stocks from the
list of BSE from the industries: (i) sugar, (ii) textiles, and (iii) pharmaceuticals. Fol-
lowing the same methodologies, as described in the previous Sects. 11.4.2, 11.4.3,
and 11.4.4, we have generated the plots given in Figs. 11.9, 11.10, and 11.11. By
looking at the diagram, it becomes clear that the method is partially successful to
segregate the market into clusters, but not fully. Therefore, we construct a new
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Fig. 11.9 Plot of MDS for stocks within (i) sugar (red), (ii) textile (blue), and (iii) pharmaceuticals
(green) industries. Stock details are given in Appendix B
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Fig. 11.10 Plot of dendrogram for stocks within (i) sugar, (ii) textile, and (iii) pharmaceuticals
industries. Stock details are given in Appendix B
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Fig. 11.11 Plot of minimum spanning tree (MST) for stocks within (i) sugar, (ii) textile, and (iii)
pharmaceuticals industries. Stock details are given in Appendix B

network. Rather than working with actual stock returns, we work with sectoral
index returns. This marks a prominent departure from the usual mode of analysis.
Typically, most studies focus on either an aggregate macrolevel market index like
S&P 500 or consider collective dynamics of microlevel individual stock returns.
Here, we consider a mesoscopic network to characterize correlations.

Empirically, we used the 13 sectoral indices from the BSE (list given in
Appendix B) for the time window May 2015-May 2016. The resulting multidi-
mensional scaling results have been plotted in Fig. 11.12, dendrogram in Fig. 11.13,
and minimum spanning tree in Fig. 11.14.

The MDS algorithm cannot segregate the markets into clusters in a way that
corresponds to the industry classifications. Dendrogram produces better results than
that. Finally, the minimum spanning tree corresponds to a fairly intuitive market
structure. Note that the only information used was sectoral returns’ correlations.
The MST shows that the banks and realty sectors are most closely related to the
finance sector. Energy sector is most closely associated with oil and gas sector and
so on. Thus we see that the sectoral MST approximates the industrial relations in a
fairly correct manner.
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Fig. 11.12 Plot of clustering with multidimensional scaling (MDS) algorithm is shown for the
BSE indices. As it is clear from the figure, it is not very useful for segregating sectors, at least with
the present sample. See Appendix A for sector details
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Fig. 11.13 Plot of dendrogram for the BSE indices. This algorithm clusters related sectors. But
MST (Fig. 11.14) presents a clearer picture. See Appendix A for sector details
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Fig. 11.14 Plot of the minimum spanning tree (MST) of BSE indices. Technologically related
sectors are closer to each other, e.g., bank and realty are related to finance only. Thus return
fluctuations of technologically related sectors co-move significantly more than other sectors. See
Appendix A for sector details

11.6 Summary

In this article, we have applied multiple techniques to analyze daily data from
Bombay stock exchange. Our analyses cover a large spectrum of tools proposed
in the econophysics literature in the last two decades. Using eigen decomposition
method, we show that the market cross-correlation structure shows a very prominent
market mode. Consistent with the literature, we show that the group mode is not
very strong for emerging countries and, in fact, is very difficult to differentiate from
the random mode. Then we carry out partial correlation analysis, which is a newly
proposed method, on the Indian data. This helps us to explicitly characterize and
quantify the average “third variable” effect in the cross correlations.

Finally, we turn to network analysis to study the core-periphery structure. We use
multidimensional scaling and dendrograms to identify clusters. In general, we do not
find any significant pattern between such clusters and the industrial classifications.
However, a much more intuitive picture emerges when we construct a mesoscopic
network with the sectoral indices. We see that minimum spanning tree across the
indices clearly segregates nodes according to their industrial classification, just by
using the return cross correlations.
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Table 11.2 List of all sectoral indices. The first column has the serial number, the second column
has the abbreviation, the third column has the full name of the sector, and the fourth column has
the category of the sector as given in the BSE

S.No. |ID

S11900
SIBANK
SPBSBMIP
S10200
SPBSEIP
SPBSFIIP
SPBSIDIP
S11400
SIPOWE
SIREAL
SPBSTLIP
SPBSUTIP
S10800

Olowlwlalnrlwlv|~

—_ = = =
Wi = O

B Appendix

Name

S&P BSE AUTO

S&P BSE BANKEX

S&P BSE BASIC MATERIALS
S&P BSE CAPITAL GOODS
S&P BSE ENERGY

S&P BSE FINANCE

S&P BSE INDUSTRIALS
S&P BSE OIL & GAS

S&P BSE POWER

S&P BSE REALTY

S&P BSE TELECOM

S&P BSE UTILITIES

S&P BSE HEALTHCARE

Category
AUTO
BANK
MATERIAL
GOODS
ENERGY
FINANCE
INDUS

OIL & GAS
POWER
REALTY
TELECOM
UTILITY
HEALTH

Table 11.3 List of all stocks considered for the analysis. The first column has the serial number,
the second column has the abbreviation, the third column has the full name of the stock, and the
fourth column specifies the sector as given in the BSE

Category
Heavy electrical equipment
Diversified

Oil marketing and distribution

S.No. |ID Name

1 ABB ABB India Limited

2 ABIRLANUVO | Aditya Birla Nuvo Ltd.

3 AEGISLOG Aegis Logistics Ltd.

4 AMARAIJABAT | Amara Raja Batteries Ltd.

5 AMBALALSA | Ambalal Sarabhai Enterprises Ltd.
6 ANDHRAPET | ANDHRA PETROCHEMICALS
LTD.

7 ANSALAPI ANSAL PROPERTIES and
INFRASTRUCTURE LTD.

8 APPLEFIN APPLE FINANCE LTD.

9 ARVIND ARVIND LTD.

10 ASIANHOTNR | ASIAN HOTELS (NORTH)

LIMITED
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Auto parts and equipment
Pharmaceuticals
Commodity chemicals

Realty

Finance (including NBFCs)
Textiles
Hotels

(continued)
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